Noncommutative rings and characteristic classes of foliations

نویسنده

  • Igor Nikolaev
چکیده

The notion of a characteristic fibration is introduced. This fibration consists of a base space M and a set of fibres which are dimension groups associated to a noncommutative ring R. Every dimension group of the fibration is isomorphic to the first Betti group of M with a ‘positive cone’ depending continuously on the fibre. The characteristic fibrations are linked to the codimension–1 regular foliations on M . In particular, we prove that the characteristic classes of such foliations coincide with the Stiefel-Whitney class of M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

Noncommutative Spectral Geometry of Riemannian Foliations: Some Results and Open Problems

We review some applications of noncommutative geometry to the study of transverse geometry of Riemannian foliations and discuss open problems.

متن کامل

Characteristic Classes of Transversely Homogeneous Foliations

The foliations studied in this paper have transverse geometry modeled on a homogeneous space G/H with transition functions given by the left action of G. It is shown that the characteristic classes for such a foliation are determined by invariants of a certain flat bundle. This is used to prove that when G is semisimple, the characteristic classes are rigid under smooth deformations, extending ...

متن کامل

Computer Algebra of Vector Bundles, Foliations and Zeta Functions and a Context of Noncommutative Geometry

We present some methods and results in the application of algebraic geometry and computer algebra to the study of algebraic vector bundles, foliations and zeta functions. A connection of the methods and results with noncommutative geometry will be consider.

متن کامل

Noncommutative Geometry of Foliations

We review basic notions and methods of noncommutative geometry and their applications to analysis and geometry on foliated manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000